On-line service
021-64283335

Home> > Products > X-ray chart

      1. Single-Chip AFM
      2. Small sample AFM
      3. Large sample AFM
      4. Biology AFM
      5. Photoinduced Force Microscope
      6. Scanning Thermal Microscopy
      7. Scanwave Impedance Microscopy
      8. AFM In-SEM
      +
      1. D series
      2. P series
      +
      1. Zeta series
      2. White light interferometer
      +
      1. Single Spot Thickness
      2. Microscopic-Spot Thickness
      3. Automated Thickness Mapping
      +
    1. +
      1. SPR Microscopy
      2. Surface plasmon resonance
      +
    2. +
    +
    1. +
      1. Nano strecher
      +
    2. +
      1. In-SEM Manipulation
      2. In-SEM Nanoindentor
      +
    +
      1. Small R&D platform
      2. Manual Probe Station
      3. Automated Probe Station
      4. High Power Probe Station
      +
      1. Needles&Accessories
      +
    +
      1. In-SEM Atomic Microscopy
      +
      1. In-SEM Nanoindentor
      2. In-SEM Nano Manipulation
      +
      1. In-Situ Chips&Holder
      +
    +
      1. Nanoimprinter Research
      +
      1. PLD Pulse Laser Deposition
      +
      1. Passive isolation station
      2. Active isolation station
      +
    +
      1. AFM Probes
      2. AFM Standard
      3. AFM Sample holder
      +
      1. Silicon Nitride Film Window
      2. Quantifoil
      3. TEM Accessories
      4. SEM Accessories
      5. X-ray Accessories
      +
      1. GGB Needles
      +
      1. Grating mold
      2. Pillar mold
      3. Hole mold
      +
    1. +
    +
X-ray chart
Brand :NTTAT
Model :Multi
Keywords :X-ray

   

The de facto standard of resolution evaluation charts for X-ray analysis.

Benefits

NTT-AT's X-ray resolution evaluation charts are applied to several X-ray analysis situations which require ultra-high resolution, such as X-ray microscopes, X-ray micro-beam analysis, and X-ray imaging.  This de facto standard X-ray chart is used in a very large number of situations throughout the world.
High X-ray irradiation durability, ultra-sharp pattern, and low edge roughness. These are the biggest features of NTT-AT's X-ray chart. Our SiC membrane based Ta absorber chart has proved to be outstandingly accurate and provides clear images for your X-ray analysis system evaluation.
Please try out the proven performance as the de facto standard.

Features

Three types of X-ray chart are available for various applications: standard type, high resolution and high contrast type, and ultra-high resolution type. Customization of the pattern layout and substrate dimensions is available for your system.

Specifications

ItemStandard type
XRESO-100
High resolution type
with thicker Ta
absorber
XRESO-50HC
NEW!!
Ultra high resolution
XRESO-20
SubstrateMaterial / SizeSi 10mm square
Thickness1mm1mm0.625mm
MembraneMaterial /
Thickness
Ru 20nm
SiN 2µm
Ru 20nm
SiC 200nm
SiN 50nm
Ru 20nm
SiC 200nm
SiN 50nm
Area1mm square1mm square1mm square
AlignmentCenter of the substrateCenter of the substrateCenter of the substrate
PatternAbsorber /
Thickness
Ta 1µmTa 500nmTa 100nm
Minimum pattern
size
100nm50nm20nm
Radial Pattern
Patterned area250µm × 350µm300µm square300µm square
X-ray_chart_01
Schematic of X-ray chart (High resolution chart)

X-ray chart Inquiry

Ultra-high resolution type
XRESO-20

XRESO-20 is the ultra-high resolution evaluation chart featuring minimum patern width of 20nm . This high specification model, released for sale in 2014, is applied to recent ultra-high resolution X-ray imaging system.
SEM image of chartPattern layout
100nm holeX-ray_chart_14
①Radial Pattern
③④Hole Pattern
⑤⑥⑦⑧L&S Pattern
X-ray_chart_17
50nm L&S
X-ray_chart_18
20nm patterns20nm Radial patterns
X-ray_chart_16X-ray_chart_15

X-ray chart Inquiry

Standard type
XRESO-100

XRESO-100 provides a resolution of 100nm at low cost.  This high contrast standard chart has not only been applied to scientific fields but also to industry use, such as the calibration of X-ray inspection system.
Pattern layout
X-ray_chart_02.jpg

X-ray chart Inquiry

High resolution type with thicker absorber
XRESO-50HC

XRESO-50HC provides a high resolution of 50nm at a reasonable cost.  It has been applied to various applications such as X-ray micro beam irradiation, X-ray microscopes, and X-ray coherent imaging.
SEM image of chartPattern layout
Radial patterns
Corresponding to point (1) of the pattern layout
X-ray_chart_13
X-ray_chart_11
50nm L&S
Corresponding to point (2) of the pattern layout
X-ray_chart_12

X-ray chart Inquiry

Past record

NTT-AT's de facto standard X-ray resolution evaluation charts are utilized in worldwide enterprises, universities, and research institutes.

Paper lists

Satoshi Matsuyama, Yoji Emi, Hidetoshi Kino, Yoshiki Kohmura, Makina Yabashi, Tetsuya Ishikawa, and Kazuto Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23, 9746 (2015); http://dx.doi.org/10.1364/OE.23.009746
Shinji Ohsuka, Akira Ohba, Shinobu Onoda, Katsuhiro Nakamoto, Tomoyasu Nakano, Motosuke Miyoshi, Keita Soda and Takao Hamakubo, “Laboratory-size three-dimensional X-ray microscope with Wolter type I mirror optics and an electron-impact water window X-ray source ,” Rev. Sci. Instrum. 85, 093701 (2014); http://dx.doi.org/10.1063/1.4894468
A. Schropp, P. Boye, J. M. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. N. Wilke, T. Salditt, J. Gulden, A. P. Mancuso, I. A. Vartanyants, E. Weckert, S. Schöder, M. Burghammer and C. G. Schroer, “Hard X-ray nanobeam characterization by coherent diffraction microscopy,” Appl. Phys. Lett. 96, 091102 (2010); http://dx.doi.org/10.1063/1.3332591
A. Schropp, R. Hoppe, J. Patommel, D. Samberg, F. Seiboth, S. Stephan, G. Wellenreuther, G. Falkenberg and C. G. Schroer, “Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes,” Appl. Phys. Lett. 100, 253112 (2012); http://dx.doi.org/10.1063/1.4729942
P. Bruyndonckxa, A. Sasova and B. Pauwelsa, “Towards sub-100-nm X-ray microscopy for tomographic applications,” Powder Diffr. 25, 157 (2010); http://dx.doi.org/10.1154/1.3416936
S. P. Krüger, K. Giewekemeyer, S. Kalbfleisch, M. Bartels, H. Neubauer, and T. Salditt, “Sub-15 nm beam confinement by two crossed X-ray waveguides,” Opt. Express 18, 13492 (2010); http://dx.doi.org/10.1364/OE.18.013492
J. W. Jung, J. S. Lee, N. Kwon, S. J. Park, S. Chang, J. Kim, J. Pyo, Y. Kohmura, Y. Nishino, M. Yamamoto, T. Ishikawa and J. H. Je, “Fast microtomography using bright monochromatic X-rays,” Rev. Sci. Instrum. 83, 093704 (2012); http://dx.doi.org/10.1063/1.4751853
Sven Niese, Peter Krüger, Adam Kubec, Stefan Braun, Jens Patommel, Christian G. Schroer, Andreas Leson, and Ehrenfried Zschech, Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008 (2014); http://dx.doi.org/10.1364/OE.22.020008
Mike Beckers, Tobias Senkbeil, Thomas Gorniak, Klaus Giewekemeyer, Tim Salditt and Axel Rosenhahn, “Drift correction in ptychographic diffractive imaging,” Ultramicroscopy 126, 44 (2013);  http://dx.doi.org/10.1016/j.ultramic.2012.11.006
Akihiro Suzuki, Shin Furutaku, Kei Shimomura, Kazuto Yamauchi, Yoshiki Kohmura, Tetsuya Ishikawa, and Yukio Takahashi, “High-Resolution Multislice X-Ray Ptychography of Extended Thick Objects,” Phys. Rev. Lett. 112, 053903 (2014); http://dx.doi.org/10.1103/PhysRevLett.112.053903
Yoshio Suzuki , “Interaction between periodic structures of object and X-ray standing wave generated by wavefront-division interferometer,” Rev. Sci. Instrum. 86, 043701 (2015); http://dx.doi.org/10.1063/1.4916735
Matthias Müller, Tobias Mey, Jürgen Niemeyer, and Klaus Mann, “Table-top soft X-ray microscope using laser-induced plasma from a pulsed gas jet,” Opt. Express 19, 23489 (2014); http://dx.doi.org/10.1364/OE.22.023489
F. Seiboth, M. Scholz, J. Patommel, R. Hoppe, F. Wittwer, J. Reinhardt, J. Seidel, M. Knaut, A. Jahn, K. Richter, J. W. Bartha, G. Falkenberg and C. G. Schroer, “Hard X-ray nanofocusing by refractive lenses of constant thickness,” Appl. Phys. Lett. 105, 131110 (2014); http://dx.doi.org/10.1063/1.4896914
R. N. Wilke, M. Vassholz and T. Salditt, “Semi-transparent central stop in high-resolution X-ray ptychography using Kirkpatrick–Baez focusing,” Acta Cryst. A 69, 490 (2013); http://dx.doi.org/10.1107/S0108767313019612
T. Salditt, S. Kalbfleisch, M. Osterhoff, S. P. Krüger, M. Bartels, K. Giewekemeyer, H. Neubauer, and M. Sprung, “Partially coherent nano-focused X-ray radiation characterized by Talbot interferometr,” Opt. Express 19, 9656 (2011); http://dx.doi.org/10.1364/OE.19.009656
K. Giewekemeyer, M. Beckers, T. Gorniak, M. Grunze, T. Salditt, and A. Rosenhahn. “Ptychographic coherent X-ray diffractive imaging in the water window,” Opt. Express 19 1037 (2011); http://dx.doi.org/10.1364/OE.19.001037
C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, and T. Salditt, “Validity of the empty-beam correction in near-field imaging,” Phys. Rev. A 91, 013821 (2015); http://dx.doi.org/10.1103/PhysRevA.91.013821
Klaus Giewekemeyer, Hugh T. Philipp, Robin N. Wilke, Andrew Aquila, Markus Osterhoff, Mark W. Tate, Katherine S. Shanks, Alexey V. Zozulya, Tim Salditt, Sol M. Grunerb, and Adrian P. Mancuso, “High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector,” J. Synchrotron Rad. 21 1167 (2014); http://dx.doi.org/10.1107/S1600577514013411
Max Rose, Petr Skopintsev, Dmitry Dzhigaev, Oleg Gorobtsov, Tobias Senkbeil, Andreas von Gundlach, Thomas Gorniak, Anatoly Shabalin, Jens Viefhaus, Axel Rosenhahne, and Ivan Vartanyants, “Water window ptychographic imaging with characterized coherent X-rays,” J. Synchrotron Rad. 22, 819 (2015); http://dx.doi.org/10.1107/S1600577515005524