On-line service
021-64283335

Home> > Products > X-ray Fresnel Zone Plate (FZP)

      1. Single-Chip AFM
      2. Small sample AFM
      3. Large sample AFM
      4. Biology AFM
      5. Photoinduced Force Microscope
      6. Scanning Thermal Microscopy
      7. Scanwave Impedance Microscopy
      8. AFM In-SEM
      +
      1. D series
      2. P series
      +
      1. Zeta series
      2. White light interferometer
      +
      1. Single Spot Thickness
      2. Microscopic-Spot Thickness
      3. Automated Thickness Mapping
      +
    1. +
      1. SPR Microscopy
      2. Surface plasmon resonance
      +
    2. +
    +
    1. +
      1. Nano strecher
      +
    2. +
      1. In-SEM Manipulation
      2. In-SEM Nanoindentor
      +
    +
      1. Small R&D platform
      2. Manual Probe Station
      3. Automated Probe Station
      4. High Power Probe Station
      +
      1. Needles&Accessories
      +
    +
      1. In-SEM Atomic Microscopy
      +
      1. In-SEM Nanoindentor
      2. In-SEM Nano Manipulation
      +
      1. In-Situ Chips&Holder
      +
    +
      1. Nanoimprinter Research
      +
      1. PLD Pulse Laser Deposition
      +
      1. Passive isolation station
      2. Active isolation station
      +
    +
      1. AFM Probes
      2. AFM Standard
      3. AFM Sample holder
      +
      1. Silicon Nitride Film Window
      2. Quantifoil
      3. TEM Accessories
      4. SEM Accessories
      5. X-ray Accessories
      +
      1. GGB Needles
      +
      1. Grating mold
      2. Pillar mold
      3. Hole mold
      +
    1. +
    +
X-ray Fresnel Zone Plate (FZP)
Brand :NTTAT
Model :Multi
Keywords :X-ray

SiC membrane-based FZP, only from NTT-AT in the world

Benefits

NTT-AT's Fresnel Zone Plate (FZP), constructed from SiC membrane and Ta absorber pattern, has an outstandingly high X-ray irradiation durability, high resolution, and high contrast.

Only NTT-AT provides the SiC membrane-based Fresnel Zone Plate (FZP), which has an outstandingly high X-ray irradiation durability. NTT-AT's FZP is constructed from dry etched Ta. It has a sharp absorber pattern and achieves a high S/N ratio and low defect imaging, and is ideal for applications such as X-ray microscopes, X-ray micro-beam irradiation, and X-ray imaging.

In addition, the Ta pattern/SiN membrane-type FZP and Au plated pattern/SiN membrane-type FZP are provided for using in soft X-ray and extreme ultraviolet (EUV/XUV) regions. In addition, a Step (Kinoform) FZP is available.

Features

Key points

  • Useful for various X-ray applications such as X-ray microscopes, EUV microscopes, X-ray microbeam irradiation, and synchrotron radiation beam monitors, etc.
  • Outstandingly high X-ray irradiation durability
  • Minimum zone width up to 25 nm
  • Customized FZP also available

Standard product list with specifications

ModelAspect
Ratio
Membrane
Material
Membrane
Thickness
(µm)
ΔRn
(nm)
D (um)NTm (nm)
FZP-S38/844.2SiN0.153884550160
FZP-S50/805SiN0.25080400250
FZP-S40/1555SiN240155970200
FZP-S50/3308SiN1503301,650400
FZP-S86/4168SiN2864161,200700
FZP-100/1558SiN2100155388800
FZP-173/2085.8SiN21732083001,000
FZP-200/2068SiN22002062551,600
FZP-C234/25000.6SiC0.22342,5002,670150
* Please note that the specifications may be subject to change without notice.

Rn : Outermost Zone Width
D : Diameter
N : Total Zone
Tm : Ta Thickness

Standard lead time: 12 weeks

X-ray absorber pattern of Fresnel Zone Plate (FZP)

Custom designed FZPs are available upon request to suit your specific X-ray energy, optical setup and focus/image performance. Please feel free to contact us if you cannot find a product that meets your requirements in our catalogue of standard products.
xray_fzp_001 Pattern image (φ2.5mm)
(Optical microscope)
xray_fzp_002 Observed SEM image with diagonal angle
(SEM)

Fresnel Zone Plate (FZP) Structure

xray_fzp_003 Binary type
xray_fzp_004 Step (kinoform) type
Minimum zone width (outer most zone)25nm
Maximum diameter5mm
Membrane materialSiN, SiC
Membrane thickness0.2-2µm
Absorber materialTa
Absorber thickness0.1-2µm
Si substrate shape10mm square
Si substrate thickness1mm
*We will be pleased to discuss different requirements with you.

X-ray Fresnel Zone Plate (FZP) Inquiry

Production example

Ultra fine pattern Fresnel Zone Plate (FZP)

Fresnel Zone Plate (FZP) diameter : 250µm, Ta thickness : 125nm, Outermost zone width : 25nm, Membrane : SiC 2.0µm
xray_fzp_005
xray_fzp_006

High aspect ratio (thicker Ta absorber) Fresnel Zone Plate(FZP)

Fresnel Zone Plate (FZP) diameter : 100µm, Ta thickness : 2.5µm, Outermost zone width : 250nm, Membrane : SiN 2.0µm
xray_fzp_007
xray_fzp_007

Step (Kinoform) type Fresnel Zone Plate (FZP)

Fresnel Zone Plate (FZP) diameter : 100µm, Ta thickness : 4.0µm, Outermost zone width : 400nm, Membrane : SiC 2.0µm
xray_fzp_009
xray_fzp_010.jpg
SEM image of the Fresnel Zone Plate (FZP) center area :Step (Kinoform) type Fresnel Zone Plate (FZP), Ta pattern

X-ray Fresnel Zone Plate (FZP) Inquiry

Past record

The  FZP with a combination of high durability, SiC membrane and sharp-shaped Ta X-ray absorber results in a tough and highly accurately shaped product.
NTT-AT's FZP has been used in many products throughout the world, proving of its high quality.

Paper lists

Nobuhito Nango, Shogo Kubota, Akihisa Takeuchi, Yoshio Suzuki, Wataru Yashiro, Atsushi Momose, and Koichi Matsuo, “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone,” Biomed. Opt. Express 4, 917 (2013); http://dx.doi.org/10.1364/BOE.4.000917
K. Nogita, H. Yasuda, M. Yoshiya, S.D. McDonald, K. Uesugi, A. Takeuchi, and Y. Suzuki, “The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys,” J. Alloy Compd. 489, 415 (2010); http://dx.doi.org/10.1016/j.jallcom.2009.09.138
Yasushi Kagoshima, Hidekazu Takano, Takahisa Koyama, Yoshiyuki Tsusaka and Akihiko Saikubo, “Tandem-Phase Zone-Plate Optics for High-Energy X-ray Focusing,” Jpn. J. Appl. Phys. 50 022503 (2012); http://dx.doi.org/10.1143/JJAP.50.022503
extreme-ultraviolet scatterometry microscope 
Tetsuo Harada, Yusuke Tanaka, Takeo Watanabe, Hiroo Kinoshita, Youichi Usui and Tsuyoshi Amano, “Phase defect characterization on an extreme-ultraviolet blank mask using microcoherent,” J. Vac. Sci. Technol. B 31, 06F605 (2013);http://dx.doi.org/10.1116/1.4826249
Nobuhiro Yasuda, Yoshimitsu Fukuyama, Shigeru Kimura, Kiminori Ito, Yoshihito Tanaka, Hitoshi Osawa, Toshiyuki Matsunaga, Rie Kojima, Kazuya Hisada, Akio Tsuchino, Masahiro Birukawa, Noboru Yamada, Koji Sekiguchi, Kazuhiko Fujiie, Osamu Kawakubo and Masaki Takata, “System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process,” Rev. Sci. Instrum. 84, 063902 (2013); http://dx.doi.org/10.1063/1.4807858
Yoshio Suzuki and Akihisa Takeuchi, “X-ray holographic microscopy with Fresnel zone plate objective lens and double-diamond-prism interferometer,” Jpn. J. Appl. Phys. 53 122501 (2014); http://dx.doi.org/10.7567/JJAP.53.122501
Masanori Tomitaa , Munetoshi Maeda, Katsumi Kobayashi and Hideki Matsumoto, “Dose Response of Soft X-Ray-Induced Bystander Cell Killing Affected by p53 Status,” Radiation Res. 179, 200 (2013); http://dx.doi.org/10.1667/RR3010.1
W. Yashiro, Y. Takeda, A. Takeuchi, Y. Suzuki, and A. Momose, “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating,” Phys. Rev. Lett. 103, 180801 (2009); http://dx.doi.org/10.1103/PhysRevLett.103.180801
Yutaka Yoshida , Kazuo Hayakawa, Kenichi Yukihira, Masahiro Ichino, Yuki Akiyama, Hiroto Kumabe, Hiroyoshi Soejima, “Development and applications of “Mössbauer cameras”,” Hyperfine Interact. 198, 23 (2010); http://dx.doi.org/10.1007/s10751-010-0228-x
Akihisa Takeuchi, Yasuko Terada, Kentaro Uesugi, Yoshio Suzuki, “Three-dimensional X-ray fluorescence imaging with confocal full-field X-ray microscope,” Nucl. Instrum. Meth. Phys. Res. A 616, 261 (2010); http://dx.doi.org/10.1016/j.nima.2009.10.054
K. Horiba, Y. Nakamura, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, K. Amemiya, Y. Senba and H. Ohashi, “Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis,” Rev. Sci. Instrum. 82, 113701 (2011); http://dx.doi.org/10.1063/1.3657156
Tatsuya Kikuzuki, Yuya Shinohara, Yoshinobu Nozue, Kazuki Ito, Yoshiyuki Amemiya, “Determination of lamellar twisting manner in a banded spherulite with scanning microbeam X-ray scattering,” Polymer 51, 1632 (2010); http://dx.doi.org/10.1016/j.polymer.2010.01.057
Sho Kanzaki, Yasunari Takada, Shumpei Niida, Yoshihiro Takeda, Nobuyuki Udagawa, Kaoru Ogawa, Nobuhito Nango, Atsushi Momose, Koichi Matsuocorrespondenceemail, “Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice,” Am. J. Pathol. 178, 1270 (2011); http://dx.doi.org/10.1016/j.ajpath.2010.11.063
Akihisa Takeuchi, Kentaro Uesugi and Yoshio Suzuki, “Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics,” J. Synchrotron Rad. 20, 793 (2013); http://dx.doi.org/10.1107/S0909049513018876
Akihisa Takeuchi, Yoshio Suzuki and Kentaro Uesugi, “Differential phase contrast X-ray microimaging with scanning-imaging x-ray microscope optics,” Rev. Sci. Instrum. 83, 083701 (2012); http://dx.doi.org/10.1063/1.4739761

Publication list (including co-authored papers):

Akihisa Takeuchi, Yoshio Suzuki, Kentaro Uesugi, Ikuo Okada and Hiroki Iriguchi, “Performance Test and Evaluation of Multilevel Fresnel Zone Plate with Three-Step Profile Fabricated with Electron-Beam Lithography,” Jpn. J. Appl. Phys. 51 022502 (2012); http://dx.doi.org/10.1143/JJAP.51.022502